$\omega / 2 \theta$ scans
Absorption correction:
empirical via ψ scans (Fair, 1990)
$T_{\text {min }}=0.779, T_{\text {max }}=0.817$
4097 measured reflections 3867 independent reflections
$R_{\mathrm{int}}=0.011$
$\theta_{\text {max }}=24.66^{\circ}$
$h=-11 \rightarrow 11$
$k=-12 \rightarrow 0$
$l=-13 \rightarrow 14$
3 standard reflections frequency: 120 min intensity decay: -0.4%

Refinement

Refinement on F
$R=0.022$
$w R=0.031$
$S=1.16$
3170 reflections
286 parameters H atoms riding $w=4 F^{2} /\left[\sigma(I)^{2}+\left(P F^{2}\right)^{2}\right]$, if $F^{2}<$ cutoff $\left[\sigma(I)^{2}\right.$ $\left.+\left(p F^{2}\right)^{2}\right]$, then the reflection is omitted ($p=0.04$, cutoff $=3.0$)
$(\Delta / \sigma)_{\text {max }}=0.0001$
$\Delta \rho_{\text {max }}=0.27 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.09 \mathrm{e}^{-3}$
Extinction correction: none
Scattering factors from International Tables for X-ray Crystallography (Vol. IV)

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BM1135). Services for accessing these data are described at the back of the journal.

References

Enraf-Nonius (1994). CAD-4 EXPRESS. Version 5.1/1.2. EnrafNonius, Delft, The Netherlands.
Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands.
Fukuhara, C., Tsuneyoshi, K., Matsumoto, N., Kida, S., Mikuriya, M. \& Mori, M. (1990). J. Chem. Soc. Dalton Trans. pp. 3473-3479.
Gerli, A., Hagen, K. S. \& Marzilli, L. G. (1991). Inorg. Chem. 30, 4673-4676.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Bis[N-(2,6-diisopropylphenyl)amido][N-(2,6-diisopropylphenyl)imido]bis(pyridine-N)zirconium

Alexander J. Blake, Georgil I. Nikonov and Phlif Mountrord
Department of Chemistry, University of Nottingham, Nottingham NG7 2RD, England. E-mail: a.j. blake@nottingham.ac.uk
(Received 20 November 1996; accepted 10 February 1997)

Abstract

The title compound, $\left[\mathrm{Zr}\left(\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}\right)\left(\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2}\right]$, contains a five-coordinate Zr atom with a distorted square-base pyramidal geometry comprising one N -(2,6-diisopropylphenyl)imido, two N-(2,6-diisopropylphenyl)amido and two pyridine ligands. There are two independent molecules in the asymmetric unit.

Comment

The chemistry of transition metal imido complexes continues to attract considerable interest (Wigley, 1994). Zirconium terminal imido complexes were first reported in 1988 (Walsh, Hollander \& Bergman, 1988) and are still relatively rare species. We have been interested in developing Group 4-imido chemistry (Blake, Mountford, Nikonov \& Swallow, 1996, and references therein) and during the course of our studies obtained crystals of the previously described (Arney, Bruck, Huber \& Wigley, 1992) zirconium-imido complex $[\mathrm{Zr}(N-2,6-$ $\mathrm{C}_{6} \mathrm{H}_{3}{ }^{i} \mathrm{Pr}_{2}$)(NH-2,6-C6 $\left.\mathrm{H}_{3}{ }^{i} \mathrm{Pr}_{2}\right)_{2}(\mathrm{py})_{2}$] (py = pyridine), (I).

(I)

Crystals of (I) contain two crystallographically independent molecules, the geometric features of which are essentially identical. However, one of the aryl rings in the second molecule (that containing $\mathrm{Zr101}$) exhibits some site disorder. This has been successfully modelled and does not affect the discussion of the general features of the molecular structure of (I).

A view of one of the molecules of (I) is shown in Fig. 1. Compound (I) is related to the complex $\left[\mathrm{Zr}\left(N-2,6-\mathrm{C}_{6} \mathrm{H}_{3}{ }^{i} \mathrm{Pr}_{2}\right)\left(\mathrm{NH}-2,6-\mathrm{C}_{6} \mathrm{H}_{3}{ }^{i} \mathrm{Pr}_{2}\right)_{2}(L)_{2}\right]$ ($L=$ 4-pyrrolidinopyridine) (Profilet, Zambrano, Fanwick, Nash \& Rothwell, 1990). It has a distorted squarebase pyramidal geometry formed by one apical N -(2,6-diisopropylphenyl)imido, two N -(2,6-diisopropylphenyl)amido and two pyridine ligands. The two amide and two pyridine ligands adopt mutually trans positions. The $\mathrm{Zr}-\mathrm{N}$ distances for the imide, amide and pyridine ligands are similar to those found in related complexes (Wigley, 1994). In particular, the Zrl -N1 and $\mathrm{Zr} 101-\mathrm{N} 101$ distances, and $\mathrm{Zrl}-\mathrm{Nl}-\mathrm{Cl}$ and Zr101-N101-C101 angles are consistent with the imido ligands acting as four-electron donors to the metal centre (Wigley, 1994). In both crystallographically independent molecules of (I), one of the imide-zirconium-amide N angles is substantially larger than

Fig. 1. View of one of the two crystallographically independent molecules of (I) with the atom-numbering scheme. The numbering scheme for the second molecule is the same except that 100 is added to the numerical labels. Displacement ellipsoids are drawn at the 20% probability level and H atoms have been omitted for clarity.
the other [compare $\mathrm{N} 1-\mathrm{Zr} 1-\mathrm{N} 3117.0(2)$, $\mathrm{N} 101-$ Zr101-N103 118.0 (2) ${ }^{\circ}$ and N1-Zr1-N2 101.7(2), $\left.\mathrm{N} 101-\mathrm{Zr} 101-\mathrm{N} 102100.5(2)^{\circ}\right]$. This probably reflects steric crowding at the metal centre, although we cannot rule out an electronic (orbital) origin. In both molecules of (I), it is the amide N atom with its 2,6 -diisopropylphenyl substituent oriented towards the arylimido ligand that has the larger angle to the imido N atom.

Experimental

Bis(tetrahydrofuran)zirconium tetrachloride in tetrahydrofuran was treated sequentially with lithium N-(2,6 -diisopropylphenyl)amide and pyridine according to previously described procedures (Arney, Bruck, Huber \& Wigley, 1992). Crystallization of the crude product from pentane afforded the title compound as yellow sphenoids.

Crystal data

$\left[\mathrm{Zr}\left(\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}\right)\left(\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}\right)_{2}-\right.$
$\left.\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2}\right]$
$M_{r}=777.23$
Monoclinic
$P 2_{1} / n$
$a=13.301$ (2) \AA
$b=32.674$ (6) \AA
$c=20.381$ (5) \AA
$\beta=91.29(2)^{\circ}$
$V=8855(3) \AA^{3}$
$Z=8$
$D_{x}=1.166 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Stoe Stadi-4 diffractometer with Oxford Cryosystems open-flow cryostat (Cosier \& Glazer, 1986)
ω / θ scans
Absorption correction: ψ scans (North, Phillips \& Mathews, 1968)
$T_{\text {min }}=0.860, T_{\text {max }}=0.904$
15850 measured reflections
11992 independent reflections

Refinement

Refinement on F^{2}
$R(F)=0.099$
$w R\left(F^{2}\right)=0.098$
$S=1.14$
8908 reflections
928 parameters
H atoms riding
Chebychev weighting scheme

Mo $K \alpha$ radiation

$\lambda=0.71073 \AA$
Cell parameters from 52 reflections
$\theta=11.1-14.8^{\circ}$
$\mu=0.283 \mathrm{~mm}^{-1}$
$T=210.0$ (2) K
Sphenoid
$0.52 \times 0.49 \times 0.41 \mathrm{~mm}$ Yellow

8908 reflections with

$$
I>2 \sigma(I)
$$

$R_{\text {int }}=0.078$
$\theta_{\text {max }}=25.01^{\circ}$
$h=-15 \rightarrow 15$
$k=0 \rightarrow 37$
$l=0 \rightarrow 23$
3 standard reflections
frequency: 60 min intensity decay: 15%

Table 1. Selected geometric parameters $\left(\AA{ }^{\circ},^{\circ}\right)$

$\mathrm{Zrl}-\mathrm{N} 1$	$1.853(5)$	$\mathrm{Zr} 101-\mathrm{N} 101$	$1.850(4)$
$\mathrm{Zrl}-\mathrm{N} 2$	$2.128(6)$	$\mathrm{Zr} 101-\mathrm{N} 102$	$2.137(5)$
$\mathrm{Zrl}-\mathrm{N} 3$	$2.134(5)$	$\mathrm{Zr} 101-\mathrm{N} 103$	$2.130(5)$

$\left[\mathrm{Zr}\left(\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}\right)\left(\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2}\right]$

Zrl-N4	2.423 (5)	Zri01-N104	2.387 (5)
Zrl-N5	2.390 (5)	Zr101-N105	2.409 (5)
$\mathrm{N} 1-\mathrm{Zrl}-\mathrm{N} 2$	101.7 (2)	N101-Zr101-N102	100.5 (2)
$\mathrm{N} 1-\mathrm{Zrl}-\mathrm{N} 3$	117.0 (2)	N101-Zr101-N103	118.0 (2)
$\mathrm{N} 2-\mathrm{Zrl}-\mathrm{N} 3$	$141.2(2)$	N102-Zr101-N103	141.4 (2)
$\mathrm{N} 1-\mathrm{Zrl}-\mathrm{N} 4$	100.6 (2)	N101-Zr101-N104	101.7 (2)
$\mathrm{N} 2-\mathrm{Zrl}-\mathrm{N} 4$	87.7 (2)	N102-Zr101-N104	87.9 (2)
N3-Zrl-N4	83.5 (2)	N103-Zr101-N104	82.3 (2)
$\mathrm{N} 1-\mathrm{Zrl}-\mathrm{N} 5$	100.7 (2)	N101-Zr101-N105	104.9 (2)
$\mathrm{N} 2-\mathrm{Zrl}-\mathrm{N} 5$	87.2 (2)	N102-Zr101-N105	86.2 (2)
$\mathrm{N} 3-\mathrm{Zrl}-\mathrm{N} 5$	87.7 (2)	N103-Zr101-N105	86.3 (2)
N4-Zrl-N5	158.7 (2)	N104-Zr101-N105	153.4 (2)

The ortho-, meta- and para-C atoms of one of the 2,6-diisopropylamide ligands of Zr 101 were found to be disordered over two sites as indicated by examination of their anisotropic displacement parameters in the final stages of structure refinement; half-occupancy isotropic atoms were refined. Suitable restraints were applied to the displacement parameters and to the $\mathrm{C}-\mathrm{C}$ distances both between the two ring fragments and within the two rings. No attempt was made to model two sites for the two ortho-isopropyl group substituents or the ipso-C atom.
Data collection: STADI4 (Stoe \& Cie, 1995a). Cell refinement: STADI4. Data reduction: XRED (Stoe \& Cie, 1995b). Program(s) used to solve structure: SIR92 (Altomare et al., 1994). Program(s) used to refine structure: CRYSTALS (Watkin, Prout, Carruthers \& Betteridge, 1996). Molecular graphics: CAMERON (Watkin, Prout \& Pearce, 1996). Software used to prepare material for publication: CRYSTALS.

The authors thank the Royal Society (London) for a Postdoctoral Fellowship (to GIN) and the EPSRC for the provision of a diffractometer.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: CF1159). Services for accessing these data are described at the back of the journal.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435436.

Arney, D. J., Bruck, M. A., Huber, S. R. \& Wigley, D. E. (1992). Inorg. Chem. 31, 3749-3755.
Blake, A. J., Mountford, P., Nikonov, G. I. \& Swallow, D. (1996). Chem. Commun. pp. 1835-1836.
Cosier, J. \& Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Profilet, R. D., Zambrano, C. H., Fanwick, P. E., Nash, J. J. \& Rothwell, I. P. (1990). Inorg. Chem. 29, 4363-4366.
Stoe \& Cie (1995a). STADI4. Data Collection Program for Windows. Version 1.04. Stoe \& Cie, Darmstadt, Germany.
Stoe \& Cie (1995b). XRED. Data Reduction Program for Window's. Version 1.04. Stoe \& Cie, Darmstadt, Germany.
Walsh, P. J., Hollander, F. J. \& Bergman, R. G. (1988). J. Am. Chem. Soc. 110, 8729-8730.
Watkin, D. J., Prout, C. K., Carruthers, R. J. \& Betteridge, P. (1996). CRYSTALS. Issue 10. Chemical Crystallography Laboratory, University of Oxford, England.
Watkin, D. J., Prout, C. K. \& Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.
Wigley, D. E. (1994). Prog. Inorg. Chem. 42, 239-482.
© 1997 International Union of Crystallography
Printed in Great Britain - all rights reserved

Acta Cryst. (1997). C53, 876-879

μ-Bromo- μ-cyclohexylphosphido-bis(tetracarbonylmanganese) and μ-Bromo- μ -(pentacarbonylmanganese)phosphido-bis(tetracarbonylmanganese) \dagger

Ulrich Flörke and Hans-JÜrgen Haupt

Anorganische und Analytische Chemie, Universität-GH Paderborn, Warburgerstraße 100, D-33098 Paderborn, Germany. E-mail: floe@mvaxac.uni-paderborn.de
(Received 25 June 1996; accepted 27 January 1997)

Abstract

The central molecular fragment of the first title complex, $\left[\mathrm{Mn}_{2} \mathrm{Br}\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{P}\right)(\mathrm{CO})_{8}\right]$, is a four-membered non-planar $\mathrm{Mn}_{2} \mathrm{BrP}$ ring with a cyclohexyl ring and a H atom attached to the bridging P atom. In the related second title complex, $\left[\mathrm{Mn}_{3} \mathrm{Br}(\mathrm{PH})(\mathrm{CO})_{13}\right]$, the cyclohexyl ligand is substituted by an $\mathrm{Mn}(\mathrm{CO})_{5}$ group which displays an unusual ecliptic arrangement with the axial carbonyl ligands of the ring Mn atoms.

Comment

There exist few structural characterizations of dinuclear metal carbonyl complexes with one phosphido and one halogeno bridging group as the central molecular fragment $M M^{\prime}(\mu-X)(\mu-\mathrm{P})(X=$ halogen $)$. Most of the complexes comprise a direct metal-metal bond and show butterfly-like structures (e.g. Taylor, Mott \& Carty, 1980; Fischer \& Vahrenkamp, 1981; Geoffroy, Rosenberg, Herlinger \& Rheingold, 1986; Jungbluth, Stöckli-Evans \& Süss-Fink, 1989). A nearly planar arrangement of the $M M^{\prime}(\mu-X)(\mu-\mathrm{P})$ core as well as a non-bonding metal-metal separation are found in the complexes $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})_{2} \mathrm{Mo}(\mu-\mathrm{I})\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{Mn}(\mathrm{CO})_{4}\right]$ (Horton, Mays, Adatia, Henrick \& McPartlin, 1988) and $\left[\mathrm{Ph}_{3} \mathrm{P}(\mathrm{CO})_{3} \operatorname{Re}(\mu-\mathrm{I})\left(\mu-\mathrm{PPh}_{2}\right) \operatorname{Re}(\mathrm{CO})_{4}\right]$ (Flörke \& Haupt, 1991). The recent work (Flörke, 1996) on [(CO) ${ }_{4} \mathrm{Mn}(\mu-$ $\left.\mathrm{Br})\left(\mu-\mathrm{PH}_{2}\right) \mathrm{Mn}(\mathrm{CO})_{4}\right]$, hereafter referred to as (III), was the first X-ray structure determination of a corresponding dimanganese complex with the bridging ligand $X=$ Br .

We present here the two related title structures, $\left[(\mathrm{CO})_{4} \mathrm{Mn}(\mu-\mathrm{Br})\left\{\mu-\mathrm{PH}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)\right\} \mathrm{Mn}(\mathrm{CO})_{4}\right]$, (I), and $\left[(\mathrm{CO})_{4} \mathrm{Mn}(\mu-\mathrm{Br})\left\{\mu-\mathrm{PH}\left[\mathrm{Mn}(\mathrm{CO})_{5}\right]\right\} \mathrm{Mn}(\mathrm{CO})_{4}\right]$, (II), which may be derived formally from (III) by substitution of one H atom attached to the μ - P atom by a cyclohexyl ligand or an $\mathrm{Mn}(\mathrm{CO})_{5}$ group, respectively. In both complexes, each Mn atom is approximately octahedrally

[^0]
[^0]: \dagger Alternative names: μ-bromo-octacarbonyl-1 $\kappa^{4} C, 2 \kappa^{4} C$ - μ-cyclohexyl-phosphanido-1:2 $\kappa^{2} P$-dimanganese and μ-bromo-1:2 $\kappa^{2} \mathrm{Br}$-tridecacar-bonyl-1 $\kappa^{4} C, 2 \kappa^{4} C, 3 \kappa^{5} C-\mu_{3}$-phosphanido-1:2:3 $\kappa^{3} P$-trimanganese.

